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We present a new high-order method for the unsteady viscous MHD equations in
two and three dimensions. The two main features of this method are: (1) the discon-
tinuous Galerkin projections for both the advection and diffusion components, and
(2) the polymorphic spectrdipelements for unstructured and hybrid discretizations.
An orthogonal spectral basis written in terms of Jacobi polynomials is employed,
which results in a matrix-free algorithm and thus high computational efficiency. We
present several results that document the high-order accuracy of the method and
perform a systematip-refinement study of the compressible Orszag—Tang vortex
as well as simulations of plasma flow past a circular cylinder. The proposed method,
which can be thought of as a high-order extension of the finite volume technique,
is suitable for direct numerical simulations of MHD turbulence as well as for other
traditional MHD applications. © 1999 Academic Press

1. INTRODUCTION

There has been recently a renewed interest in developing numerical algorithms fo
solution of compressible magnetohydrodynamics (MHD) equations [1-6]. This intel
stems from a wide range of new applications and emerging technologies such as adv:
plasma thrusters for space propulsion, high-power microwave and electro-magnetic |
devices, processing of semiconductors, plasma-assisted drag reduction techniques
personic flight, electro-magnetic turbulence control for conducting fluids, and models
the solar wind.

The governing equations describing both dense and sparse plasmas are time-depe
and a realistic description of geometries involved in the aforementioned applications
quires complex three-dimensional computational domains. In addition, these equation
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VISCOUS MHD EQUATIONS 609

strongly coupled and exhibit mixed hyperbolic/parabolic character depending on the pa
eter range, with a large range of temporal and spatial scales involved, and with complic
boundary conditions. Most of these issues have been adequately addressed in the put
works, which are primarily concerned with the case of ideal MHD, thus neglecting
effect of viscosity and resistivity. However, one of the limitations of the current numeris
methods is that they are of low-order (at most second-order) accurate. High-order &
racy is very important for accurateng-timeintegration of wave propagated phenomen:c
as it dictates the efficiency and thus the feasibility of predicting such long-term beha
[7, 8]. In addition, certain flows such as compressible MHD turbulence exhibit a very r
structure that includes features not observed inincompressible flows, e.g., small-scale
ture massive jets [9]; high-order methods are more suitable for resolving such struct
effectively.

Two of the main difficulties in employing high-order discretization for the solution
hyperbolic conservation laws are: (1) maintaining monotonicity for non-smooth solutic
and (2) preserving conservativity. Progress has been made in both collocation and Gal
discretizations [10-12] but at the expense of extra computational complexity making t
methods inefficient compared with their low-order counterparts. In the MHD framewc
such difficulties are compounded by the imposition ofdhergence-freeondition for the
magnetic field, which results in a loss of the hyperbolicity of the ideal MHD equations. T
condition has been dealt with by employing staggered grids in the work of Evans and Ha
[13], which was extended more recently by Peterdial. [3]. However, such an approach
cannot be easily incorporated in high-order discretizations. Alternative approaches inc
the operator-splitting algorithm proposed by Zachatyal [2] and the development of
extended Riemann solvers by Powell [4]; the latter is easily extended to multi-dimens
and also to high-order discretization. More recently, a different formulation for the MF
system has been proposed by Meir and Schmidt [14] who employeditrent fluxinstead
of the magnetic flux in their formulation.

The aforementioned difficulties of high-order discretization have been more rece
addressed in the context of a discontinuous Galerkin formulation for the compress
Navier—Stokes equations in [15, 16]; a somewhat different version has also been proy
in [17, 18], and more for the Euler equations in [19]. The new formulatidiuisbased
and allows the incorporation of approximate Riemann solvers in the variational staten
providing in essence a variational (Galerkin) framework for what can be described as a f
volume formulation. In this context, it is then straightforward to incorporate a high-ort
basis in the discretization. The formulation also allows for finite jurips dontinuity)
across interfaces even for second-order operators, and thus a computationally efficien
basis can be selected. To this end, we will employ spectral bases written as tensor-prodt
terms of one-dimensional Jacobi polynomials. We have obtained such bases for polymo
domainsincluding triangles and quadrilaterals in two dimensions, and tetrahedra, hexah
prisms, and pyramids in three dimensions. Conservativity is honored in the element-
sense automatically, while monotonicity is satisfied by lowering the order of the expan:
around discontinuities following a standaréetype refinement procedure [15].

In the following, we first review in Section 2 the spatial discretization we employ and
present more details in Appendixes | and Il. We then formulate our version of the discor
uous Galerkin method for the advection and diffusion equations in Section 3. Subseque
we present the specific algorithms for the MHD equations in Section 4. In Section 5we
present two numerical examples that demonstrate exponential (spectral-like) converc
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for smooth analytical solutions. We then perform a systematic refinement study of
Orszag—Tang vortex problem [20], as well as comparisons of incompressible and c
pressible MHD flows past a circular cylinder. We conclude in Section 6 with a brief su
mary.

2. SPATIAL HIGH-ORDER DISCRETIZATION: SPECTRAL/ hp ELEMENT METHOD

We first review the spectrdip element method that we employ in the proposed alge
rithm for spatial discretization. We break up the computational domain into subdomain
elements, which in two dimensions may be triangles or quadrilaterals or a combinatio
both. This is shown in Fig. 1 (left) where the domain is broken up into 38 quadrilaterals
22 triangles. In three dimensions, we use tetrahedra, hexahedra, prisms, and pyramic
combinations of these in order to accommodate the geometric complexity of the prob|
We then expand unknowns and data within each one of these elements in terms of a su
polynomial basig (x) using a local coordinate systgfi, &») associated with that element.
For example, the functiofi (x, y) is approximated as

FOGY) ~ ) 0 apgdpg(ée £2).
q

p

where theapq are the unknown coefficients. The maximum value of the indjzepis the

order of the polynomial expansion which we will refer to in this paper@stder” and we

will denote it by N. In order to achieve convergence we have two options: Either to ke
the p-order fixed and increase the number of elements (the so-célteefihement”) or to

fix the number of elements and increase fherder (‘p-refinement”). The corresponding
convergence rate is algebraic in the former case but exponential in the latter case assl
that smooth solutions are sought. Exponential convergence implies that by doublinc
number of degrees of freedom the error will decay by at least two orders of magnit
whereas algebraic convergence implies that the error will decay by an algebraic fa
e.g., a factor of 4 for a second-order scheme. We will demonstrate this dual path to
vergence in the results section (see Section 5). We also prove theoretically in Appen
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FIG. 1. Left, domain decomposition into triangular and quadrilateral elements. Right, quadrature grid it
cating the location of quadrature points at the intersection of grid lines.
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why the decay of coefficients is exponential which justifies the corresponding expone
convergence.

In addition to the element decomposition we also need a set of points where we evalue
the integrals, i.e., inner products and boundary contributions in the discontinuous Gale
formulation (see below). This quadrature grid is shown in Fig. 1 (right); the number
quadrature points (i.e., the “quadrature order”) is related to the spectral order and is ch
so that the quadrature is exact (see Appendix II).

Returning now to the construction of a suitable basig(&1, £2), we are interested in
developing a computationally efficiehigh-orderexpansion which demonstrates attractivi
numerical properties such as matrix conditioning and, in the case of convection proble
appropriate explicit time step restrictions. Therefore, an appropriate starting point in
veloping the multi-dimensional expansions is to construct a set of polynomial expans
which are orthogonal in the Legendre inner product over each unstructured region.
following expansion was proposed in two dimensions by Dubiner [21] and extende
three dimensions in [22]. In Appendix | we present a theoretical derivation of this bz
for polymorphic elements in two and three dimensions; see also [23]. Here we preser
orthogonal basis for triangular elements,

Ppa(Er, £2) = YAV (n2),

where the coordinatey, & are Cartesian whereas the, 1, are non-Cartesian and will
be defined below. Figure 2 illustrates the construction of the two-dimensional expan
modes using this general form. To generate each mode the fun&cj.‘;on) is combined
with /® pq(72). However, unlike a quadrllateral expansmjﬁ,q(nz) has a different form for
every value ofp of the principal funcUon{xa(nl)

Let us now denote b?Nﬁ(z) the Nth-order Jacobi polynomial of weighésandg (see
also Appendix I). Then, the principal functiom?ﬁa,(z) andxﬁibj (2), for orthogonal expansions
are

Vi@ =P, Ih@= (E) P2H0(z).

2
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FIG. 2. Construction of two-dimensional expansion moggg(&,, &) within a triangular region using the
product of a one-dimensional tensﬁtﬁ(nl(sl, &,)) and a two-dimensional tensdr‘;q(nz(sz)).
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The two-dimensional expansions in terms of the principal functions are defined as

quadrilateral expansion  ¢pq(£1. £2) = Y3 (60 V3 (62)
triangular expansian  ¢pq(&1. &) = U300 ¥H,(12),

where

_2+8)
(1-52)

The shape of all the triangular modes for a fourth-order polynomial expansion are sh
in Fig. 2. Similarly, we can obtain the three-dimensional expansions (see Appendix I).
These expansions are all polynomials in terms of both system of coordinetgs; , &,)
and (n1, n2). The expansions in the quadrilateral and hexahedral domains are simply <
dard tensor products of Legendre polynomials in terms of Cartesian coordinates ¢
P%O(z) = L(2). The development of unstructured expansions using the local “collaps

coordinategn1, n2) is linked to the use of the more unusual functi@ﬁ (2). This func-
tion contains factors of the forml%z)” which are necessary to keep the expansions
polynomials in terms of the Cartesian coordinatgsé,).

n , n2 = &2.

3. DISCONTINUOUS GALERKIN FORMULATION

Discontinuous Galerkin projections provide great flexibility in domain-decompositi
methods as they allow? jumps across subdomains even for operators of order higt
than first. This, in turn, implies that any convenient complete set of trial functions c
be employed. In our method, we have chosen to employ the aforementioned high-c
representations using hierarchical and orthogonal bases that lead to high computa
efficiency. In the Galerkin framework this is not possible as, for example, for second-ol
operators &° continuity requirement is imposed across the subdomains. This constr.
results in at least partial loss of orthogonality if hierarchical spectral bases are empilc
for spatial discretization [24]. However, if the spectral bases are not constrained as ir
current formulation full orthogonality is restored.

We present first the discontinuous Galerkin (DG) formulation for a generic systerr
advection-diffusion equations of the form

Ot +V. Fldeal — V. FVisc’ (1)

whereF'dea gand FVis¢ correspond to inviscid and viscous flux contributions, respectivel
Specificimplementationissues for the MHD system will be discussed separately in Secti
Splitting the advection-diffusion operator in this form allows for a separate treatment of
inviscid and viscous contributions, which in general exhibit different mathematical pror
ties. In the following, we review briefly the discontinuous Galerkin formulations employ
in the proposed method. A rigorous analysis of the advection operator was present
[15], where a mixed formulation was used to treat the diffusion terms. No flux limiters
necessary as has been found before in [25] and has been justified theoretically in [26]
present a formulation similar to the one developed by Cockburn and Shu [27] for fir
elements but with important modifications both in the variational form as well as in |
time-stepping algorithm.
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3.1. Discontinuous Galerkin for Advection

To explain the formulation we consider the linear two-dimensional equation for advec
of a conserved quantity in a region2

au

— +V-Fu) =0, 2
T (= 2)
where F(u) = F(u)'%a = (f (u), g(u)) is the flux vector which defines the transport of
u(x, t). We start with the variational statement of the standard Galerkin formulation
(2) by multiplying by a test functiom and integrating by parts

/—vdx+/ vﬁ-F(u)dS—/Vv-F(u)dX:O. 3)
Q

The solutionu € S (approximation space) satisfies this equation fowal) (test space).
The requirement thaf consist of continuous functions naturally leads to a basis consi
ing of functions with overlapping support, which implies that Eq. (3) becomes a ban
matrix equation. Solving the corresponding large system is not a trivial task for pare
implementations, and therefore a different type of formulation is desirable. Another c
sideration from the point of view of advection is that continuous function spaces are not
natural place to pose the problem. Mathematically, hyperbolic problems of this type t
to have solutions in spaces of bounded variation. In physical problems, the solution:
piecewise continuous, that is, are smooth in regions separated by discontinuities (shc
An additional consideration is that the formulation presented next preserves automati
conservativity in the element-wise sense.

These considerations suggest immediately a formulation whienay contain discon-
tinuous functions. The discrete spagtcontains polynomials within each “element,” but
zero outside the element. Here the “element” is, for example, an individual triangular
gionT; in the computational mesh applied to the problem. Thus, the computational don
Q= U; T;, andT;, T; overlap only on edges. In the applications in Section 5 we will u
hybrid discretizations, i.e., combinations of triangles and quadrilaterals, as well.

In the discontinuous Galerkin formulation, each elem&nti§ treated separately corre-
sponding to a variational statement (after integrating by parts once more),

%(u, v)E+/ v(f(ui, ue) — F(u)) -nds+ (V- F(u), v)e = 0, 4)
aTe

whereF (u;) is the flux of the interior values. Computations on each element are perforr
separately, and the connection between elements is a result of the way boundary conc
are applied. Boundary conditions are enforced via the numerical surface flxue)
that appears in Eq. (4). Because this value is computed at the boundary between ad
elements, itmay be computed from the valua given at either element. These two possibl
values are denoted here @sin the interior of the element under consideration agpdh
the exterior (see Fig. 3). Upwinding considerations dictate how this flux is computed a:
explain in the one-dimensional example discussed below. In the more complicated cas
hyperbolic system of equations, an approximate Riemann solver should be used to cor
a value off, g based ony; andue.
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FIG. 3. Interface conditions between two adjacent triangles.

Specifically, we compute the fluk(u;, ug) using upwinding, i.e.,
f(u) = RATLUj + RA™ LU,

where A (the Jacobian matrix df) is written in terms of the left and right eigenvectors
i.e., A= RAL with A containing the corresponding eigenvalues in the diagnoal; al:
AT = (A £ |A])/2. Alternatively, we can use a standard Roe-splitting for the flux of tf
form

. 1 1
f(u = E(f(ue)‘i‘ f(up)) — §R|A|L(Ue_ui)

or its appropriate extension for the MHD equations [4]. Other simplified Riemann solv
such as the one derived by Linde [28] or of kinetic-type [29] can also be employed, sin
to the implementation in standard finite volume methods (B. van Leer, private commun
tions).

3.1.1. One-dimensional exampléelo illustrate how the discontinuous Galerkin formu-
lation works, we consider the one-dimensional equation for a saékat)

du+[f(W]x =0, wherex € [X., Xgr],
which we put in weak form and integrate by parts
(v, u) — (vx, F(W) +vfWF =0, (5)

wherex € [X., Xg] with X, Xg the left and right boundaries of a single element.
The treatment of the boundary terms is important as it justifiesdhservativity property
To wit, the last term in (5) expands to

— — + —
vpfr—vl fL,

wheref  denotes the flux evaluated at the right boundary on the interior side, and simil
for the other terms. The above expression implies@nindtreatment (see the flux of the
second term withf | replacingf ), and the test function is evaluated inside the interval
[xL, Xr]. Note thatf| is a function of ¢, u]") and similarly for f 5. Integrating Eq. (5)
by parts again we obtain

(3eu, v) + (fx(u), v) +vp fr — v L —vRrfr+ vl f{, (6)
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which reduces to the form
(Bu, v) + (fe(u), v) + v (Ff = f). (7

The last term in this equation represents the so-called weak imposition of boundary
ditions (through the jump term). If we use test functions which are constants along ¢
element (in an equidistant mesh with spacing), we recover the upwind (Euler backwards)
finite difference formulation for the familidinear advection equatigrthat is,

—Uj_1

U
O +V=—1= =0,

whereV is the constant advection velocity.

3.2. Discontinuous Galerkin for Diffusion

The main idea in our version of discontinuous Galerkin formulation is similar to the c
in mixed methods [30], i.e., the use of an auxiliary variable. A special version of this metl
was first proposed in [31] for the compressible Navier—Stokes equations. A new varial
the method without the introduction of auxiliary variables has been presented and anal
in [32, 18].

Here, we consider as a model problem the parabolic equation with variable coeffic
v(X) to demonstrate the treatment of the viscous contributions:

u=V-wvu + f, inQ, uel?Q)
u=gx,t), onos2.

We then introduce the flux variable
q=-vVu
with q(x, t) € L?(R), and re-write the parabolic equation

Ut:—v-q+f, inQ
1/vq = —Vu, in Q
u=g(x,t), onos2.

The weak formulation of the problem is then as follows. Figdu) € L%(22) x L2()
such that

(U, we = (@, Vw)g — (w, g - N+ (f,w)e,  Yw € LA(Q)
1/v(q, V)g = (U, V- V)g — (Up, V- N)E, wv e L2(Q)
u=gx,t, onos2,

where the parentheses denote the standard inner product in an el&jpant(the angle
brackets denote boundary terms on each elementpvdémoting the unit outwards normal.
The surface terms contain weighted boundary valuesg af,, which can be chosen as the
arithmetic mean of values from the two sides of the boundary,e=0.5(v; + ve), and
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b =0.5(g + ge)- The subscriptgi) and (e) denote contributions from the interior and
exterior of elementk), respectively (see Fig. 3).

By integrating by parts once more, we obtain an equivalent formulation which is ea
to implement and it is actually used in the computer code. The new variational probler

(U, we = (=V -G, w)e — (w, (@ — ) -Me+(fwe,  YweLXQ)
1/v(9, V) = (—VU,V)g — (Up— Ui, V-NE,  WelL*Q)
u=g(,t), inog,

where the subscript) denotes contributions evaluated at the interior side of the bounde

The above system is currently solved explicitly but iterative solution schemes (implicit)
also under consideration.

4. THE VISCOUS MHD EQUATIONS

The equations for compressible magnetohydrodynamics (MHD) can be expresse
conservative form in compact notation as

ap
o= VAV
3(pV) t : 1o 1
=_V. — BB BRI - =
ot <,ovv + p~|—2| | SJT

oB 1
at:—Vx(va+SVxB)

E——v (E+ pyVv + }|B|2I—BBt v—iv
T P 2 sV T
1 1, 1
+S(B-VB—V(2|B|>)—SJPrVT>

V-B=0

2
T = (ajvi +8ivj)— év-V(sij‘

Alternatively, in flux form with the explicitly stated fluxes they are expressed as

au . 3|:L?eal . 3|:I;Jeal B 8F|Zdeal N aFlﬁsc 3F\fsc 3F\;isc

ot ox ay 3z ax oy ' ez
V-B=0

U = (p, pu, pv, pw, By, By, Bz, E)
Fideal — (pu, pu? — BZ + p, puv — By By, puw — ByB;, 0, uBy — vBy, UB, — wBy,
— T
(E+ p)u— (v-B)By)
F'fea' = (pv, pvu — By By, pv? — Bf, + p, pvw — ByB;, vBy —uBy, 0, vB, — wBy,
— T
(E+ pv—(v-B)By)
F'Zdealz (pw, pwu — B;By, pwu — B;By, pw? — Bf + p, wBy —uB,, wBy — vB;, 0,
— T
(E+ pw — (v-B)B,)
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2 1 1 1
FYise — (0, — aﬂ—fv-v = a—u+a—v = a—u+a—w ;
S \ax 3 S \dy o9x/ §\9dz 9X
0. 1 /0By 9Bx\ 1 /0B, 9B
S \ ax ay )7 s \ oax oz )’

(v DUy VU+13VZ+ 10T +1 14(1B?) B.vE T
29x ' Prax S\2 ax X

s \ax T ay/) s \ay 3 S \dz ay)/)’
(3Bx_3_5v)o 1<3_Bz_3_3v>
ay ax )77 S\ ay 0z )’

19v2 19T 19(|B|?) T

(——(V V)U+V VU+——+——>+§<§ 5 —B~VBy)>
1
3

F\ﬁsc

209y Proy
1 /0w 0du 1 /0w ov 2 [ow
sl mt=)slat) sl -
S \ax 9z 3 ay 9z) S\ oz
1 /0B, 0B, 9By 9B, |
S\ 9z X S 9z oy )77

1 10v2 1 3T 1 /13(Bj?) T
—(-2vV-vwtv-Vw+="" p = 4= (= -B-VB
&( (V- Vwtv- Vw5 o+ o az>+3<2 9z Z))

Visc
I:z

TN Dk D) /5\ D=

with the variables and parameters defined in Table I. Note that here we use a diffe
non-dimensionalization than the one used in the ideal MHD equations; the important |
dimensional parameters are the viscous and resistive Lundquist numbers.

TABLE |
Variables and Parameters Used in the Equations
of Compressible MHD

Variable Description
p(X, 1) Density
v(X,t) = (U, v, w)(X,t) Velocity
B(x, t)_(B By, B,)(x, t) Magnetic fields
E= = 1) + 5 (pv v+B-B) Total energy
p Pressure
p=p+ %B -B Pressure plus magnetic pressure
= % Temperature
Pr==2¢ Prandtl number
R Ideal gas constant
n Magnetic resistivity
m Viscosity
S = ”OVA—LALO Viscous Lundquist number
S= VATLO Resistive Lundquist number
Cp Specific heat at constant pressure
Vi=88 Alfven wave speed

A= /V2/V¢ Alfven number
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4.1. TheV - B=0 Constraint

The presence of the - B =0 constraint implies that the equations do not have a strict
hyperbolic character. It has been shown in [33] that even a small divergence in the r
netic fields can dramatically change the character of results from numerical simulation
our formulation, we will demonstrate two approaches in dealing with this constraint. C
formulation uses a streamfunctigrix, y) for the magnetic fields (in two dimensions),

B =V x (¢k),

wherek is the unit vector perpendicular to the plaixe y). We have used this approach in
velocity-pressure-magnetic streamfunction formulationp, ¢) for incompressible MHD
in [34]. There we showed that it is a good approach in two dimensions for dealing with
zero divergence constraint for the magnetic fields. We used the same basic approach
as was used in [9]. However, we coupled the magnetic fields to the rest of the state vec
the following way: First, we updated the magnetic potential using a semi-implicit integra
from which we calculated the magnetic field components. Then, we used these valu
linearize around in the usual Riemann solver for the other components. This means we
modified left and right eigenvectors for the Riemann solver for the density, momentum,
energy flux functions in the ideal (inviscid) part, and similarily for the viscous fluxes. \
will outline the full Riemann solver in the next section.

An alternative approach to the magnetic stream function was developed by Powe
[4]. The idea is to re-formulate the Jacobian matrix to include an “eighth-wave,” the
vergent mode that corresponds to velocityThis way the degeneracy associated with th
divergence-free condition is avoided while the rest of the eigenvalues of the Jacobial
main the same. This modification effectively corresponds to adding to the MHD equati
a source term proportional 16 - B,

SP = _(V : B)(Oa BXa By, BZv uv,w,V- B)T

to the right-hand-side of the evolution equation. This source term will compromise
conservation formulation of the scheme. In practice, however, this is a very small col
bution, especially in the high-order discretization, and thus the conservativity conditio
essentially satisfied. From another point of view, this source term effectively changes
evolution equation of th& - B from 9; V- B = 0 to an advection equation. This implies that ir
certain situations, such as in stagnation-type flows, there may be some small accumu
of divergence of magnetic flux. However, in such cases a projection to a divergence:
field (using, for example, Hodge decomposition) can be employed as suggested in [3:

In [4] this extra term was incorporated into the Riemann solver for the inviscid fl
terms; a similar implementation was followed in [5]. In the present work, we incorpor:
this term as a trusource termwithout modifying the Riemann solver. The divergence o
the magnetic field is calculated consistently using the discontinuous Galerkin formalist
compute the derivatives of the magnetic fields.

4.2. Implementation of the Inviscid Flux Terms

We evaluate the inviscid fluxes and their derivatives in the interior of the elements
add correction terms (jumps) for the discontinuities in the flux between any two adjac
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elements as shown in Subsection 3.1. In order to evaluate the inviscid flux at an element
face we use a one-dimensional Riemann solver to supply a numerical flux there. Ata do
boundary we use the specified conditions and treat the exterior boundary as the bound
a “ghost” element. This way we can use the same Riemann solver at all element bound

We linearize the one-dimensional fl&®® in the normal direction to a shared elemen
boundary using the average of the state vector at either side of the element boun
That is, sinceFl% is a nonlinear function of the state vector we use the average stats
form an approximation to the Jacobian of the flux veddgr The Jacobian matrix for the
flux vector for the evolution equations expressed in primitive variables is simpler than
conserved form. Thus, we perform the linearization for the primitive form and transforn
the conserved form. The primitive Jacobian matixhas the form

u p 0 0 0 0 0 O
0O u 0 0 By B B 1
P p p P
00 u O By Bi o 1
P p o
0 0 0 u 2 o & o
P P
0 0 0 0 0 0 0
0 Bp -B O —v u 0 0
0 B, 0 —B —w 0 u 0
0yp O O —(y-DLu-B 0 0 u

The scaled left and right eigenvectors of the primitive Jacobian mayixiue to Powell
[4], are

entropy wave,
le=U
1
le = <1, 0,0,0,0,0,0, —2>
a
re = (17 01 07 01 07 Oa Os O)t;
Alfven waves,
B
)\,a =u :l: 7X
NG
1 ,By )
| —10,0, , By, O, j:— 0
a= ﬁ< —B2 ,By \/— [
1
—(0, 0, , By, 0, £ 0) ;
\/i( —Bz, By Bz 0, FBy/ P )
fast waves,
A = U=xcC

asfya asfa 05_f>
NN/ )
r{ = (pas, asct, :Fascs/gxﬁy, ForsCsfx Bz, 0, asﬂya«/—, Ols,Bza«/—, of J/p)t§

1
I+ = 222 (0 +atCt, FasCsPxBy, FasCzPxPz, O,
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slow waves,

As = U= Cg

: aifya  affa o
|s=2a2<0,thscs,:E(XfoﬂX’By,j:afo‘BXIBZ’O’_ t By _ t Bz s)

v P
rs = (pas, TosCs, LorsCt Bx Py, £a1Ct PPz, 0, —as Byay/p, —at Bza/p. as)/p)t7

where
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a2 — 2
i =2%
ct —c2
¢z —a?
wl=
Cf_cs
Bx = sgn(By)
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B,

fr = —F——=.
\/B? + B2

We can transform between the primitive and conserved variables with the transform

A= S AT
where
U = (p, pu, pv, pw, By, By, B, E)
are the conserved variables, and
W = (p, u, v, w, By, By, B, p)
are the primitive variables. This gives
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and

Tl 0 0 0 0 0 0 O

—u 1 0 0 0 0 0 O

o o

— 0 % 0 0 0 0 0

W | _» 9 0 1 0 0 0 0
= P P s
ou 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

[ vV —yu —yv —yw —yBx —-yBy —yB; v

wherey =y — 1.
We are now in a position to evaluate the numerical flux at the element boundaries.
use the following formulation for the upwinded flux:

. 1 au &I
F(U,Ug) = 2<F<u|)+F(uE)— Mgamurk) ®)
AW
(szlk'm(UE_Ul)~ 9)

Here thdy andry are the ordered left and right eigenvectors of the primitive Jacobian mat
We have to apply thé\% operator to the right eigenvectors to calculate the conserved fl
The 1 are the wave speeds associated with the eigenvectors.

4.3. Implementation of the Viscous Terms

The viscous terms are evaluated in two steps. First, we obtain the spatial derivatives ¢
primitive variables using the discontinuous Galerkin approach. Then, we repeat the prc
for each of the viscous fluxes using these derivatives. Dirichlet boundary conditions
the momentum and energy characteristic variables can be imposed weakly as discus
Subsection 3.2 or explicitly after the fluxes have been evaluated and then project the r
using the orthogonal basis.

4.4. Summary of the Algorithm

The main idea in the implementation of this algorithm is to consider a set of quadra
points at the interfac®' and a set of quadrature points at the ed@&s(see right plot
of Fig. 1). The se@Q', on which the approximate Riemann solver is applied, correspor
to Gauss quadrature, i.e., it does not include the end points, thus avoiding complica
associated with multiplicities of vertices. On the other hand, th@Salepends on the type
of element that is used. Details on this as well as on computing the flux integrals invol
in the discontinuous Galerkin formulation are presented in Appendix Il. In the followil
we present the main steps of the proposed algorithm:

e Step 1. Read in initial condition8(x, 0) and evaluate all fields at all element
quadrature points. Set=0.

e Step 2. Calculate the fluxés from Egs. (8) and (9) at the Gauss quadrature poin
Q' onthe element interfaces. At domain boundaries use the prescribed boundary cond
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for the exterior values of the fields. Interpolate the flukggo the quadrature poin®e.
Scale the fluxes with the edge Jacobian divided by the volume Jacobians.

e Step 3. Calculate the inviscid flux ternfg’e@, Fi®ea, and Fi@ at the element
guadrature points.

e Step 4. For each component of the state vedios (U(x, t"))i calculate(aFdea/

X + oF\lea gy 4 gFideal/5 7).

e Step 5. Form the differencé,( — F1) (whereF, is the flux at interior edge side)
and add this to the divergence of the inviscid fluxes calcualted in Step 4.

e Step 6. Calculate the spatial derivatives of the primitive fields. For example, we \
needg—i. We evaluate this as described in Subsection 3.2 using the discontinuous Gale
formalism to compensate for the jumps across element interfaces.

e Step 7. Use the derivatives of the primitive fields to construct the viscous flux ter
F}(/isc’ F\fsc, andl:\zﬁsc_

e Step 8. Take the divergence of the viscous flux terms and subtract the resul
Step 5.

e Step 9. Take the inner-product of the result from Step 8 with the orthogonal ba
Evaluate the resulting polynomials at the quadrature points and placgfibint™~9).

e Step 10. Update the state vedthix, t"*1) = U(x, t") + At Zq BqUf(x, t""9) using
an Adams-Bashforth integration scheme.

e Step 11. Increase by one. Ift" is less than the termination time return to Step 2.

e Step 12. Output final values of the state veddox, t&"9).

5. CONVERGENCE AND SIMULATION EXAMPLES

In the following we first test the accuracy of the proposed method using analytical s
tions and verify its exponential convergence. We then present simulations of more com
flows that demonstrate how accurate solutions can be obtained and verified withou
need for re-meshing but by simply increasing fhherderN, i.e., the number of modes per
element.

5.1. Two-Dimensional Magnetohydrostatic Test Case

A simple test for the two-dimensional MHD code is to consider a steady irrotatiol
magnetic field and zero velocity. The test was performed dgitial value problemand
the following exact solution was used:

p=1
u=20
v=2~0
e(—27Ty)
E =1984+
B, = —cogxx)e"™Y

By = sin(x)e"™).

The above solution was first derived by Priest [35]. We used Dirichlet boundary conditi
by specifying the exact solution on all boundaries. We also used the exact solutio
initial conditions. Therefore, after convergence to steady state, the discrete solution
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FIG. 4. Magnetohydrostatic test case for the two-dimensional code. Left, magnetic streamlines of st
solution atp-orderN = 12; right, maximum pointwise error verspsorder for a fixed number of elements.

deviate from the initial condition and that deviation will give us a measure of the spa
discretization error. In steady state there are no temporal errors unless there is ope
splitting involved in the formulation, which is not the case here. The irrotational magne
field implies that the Lorentz force is zero so the momentum equations are trivially satis
The magnetoviscous term is zero and ¥he B term is also zero. Thus, the compressibl
MHD equations are satisfied. The domain and hybrid discretization we used consiste
triangular and quadrilateral elements and is depicted in Fig. 1. In Fig. 4 we also show the
numerical error decreases exponentially fast to zero with incregsorder while keeping
the number of elements fixed. This is indicated by the straight line in the convergence
(linear-logarithmic) axes of Fig. 4.

In summary, in this example we have demonstrated the exponential (“spectral”) con
gence of the method in agreement with the analysis in Appendix | that presents the d
rate of the expansion coefficients.

5.2. Three-Dimensional Magnetohydrostatic Test Case

We modified the two-dimensional test case, used in the previous section, to be a tl
dimensional test case for the three-dimensional MHD code. Again we used a steac
rotational magnetic field and zero velocity solution to the MHD equations. The test \
performed as an initial value problem and the following exact solution

p=1
u=20
v=20
w=0

Bx = (coSm(y + 1))— cogrz))e **+D
By = Coinz)e—ﬂ(y+l) + S|n(7'[(y 4 1))e_n(x+1)
B, = sin(r2) (e—”<>’+1) _ e‘”(x+1))

E =5+ 05(Bf + B + BZ)
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3 7
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FIG. 5. Three-dimensional magnetohydrostatic test case. Left, mesh of prisms and hexahedra used. |
convergence plot showing exponential decrease in maximum pointwise error with incrpasider.

was used as the boundary conditions and as the initial condition. By construction,
magnetic field is irrotational and the Lorentz force is zero so the momentum equations
trivially satisfied. The magnetoviscous term is zero andvtkeB term is also zero. The
domain and discretization, which consisted of a mix of prisms and hexahedra, are depict
Fig. 5 (left plot). Although such a hybrid discretization consisted of heterogeneous elem
is not needed here for this simple computational domain, this example demonstrate
flexibility of the method in discretizing complex geometry domains using different typ
of elements. We also plot on the right the numerical (maximum pointwise) error show
that it decreases exponentially fast to zero with increasing expansion prdedér) while
keeping the number of elements fixed. This numerical result is again in agreement
the theoretical result of the exponential decay of the expansion coefficients as discuss
Appendix I.

5.3. Simulation of the Orszag—Tang Vortex

We have performed a series of detailed simulations in order to investigate the small-s
structure exhibited in MHD turbulence. In particular, we consider a problem first stud
by Orszag and Tang (1979) [20] in the compressible case and later extended by Dah
and Picone (1989) [9] to the compressible case. The initial conditions are non-ranc
periodic fields with the velocity field being solenoidal. The total initial pressure consists
the superposition of appropriate incompressible pressure distribution upon a flat pre:
field corresponding to an initial average. Mach number below unity. It was found in [20,
that the coupling of the two-dimensional flow with the magnetic field causes the format
of singularities, i.e., excited small-scale structure, which although not as strong as
singularities in three-dimensional turbulence, they are certainly much stronger than
dimensional hydrodynamic turbulence. Moreover, it was found in [9] that compressibi
causes formation of additional small-scale structures such as massive jets and bifurc
of eddies. Our interest here is to investigate if we can capture these fine features bo
structured and unstructured meshes, as shown in Fig. 6.
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FIG. 6. Hybrid mesh on the left and unstructured mesh on the right used for the Orszag—Tang vortex sin
tions.

The initial conditions we used were

p — C + 1COS(87TX> + 4cos(4nx> Cos<2ny>
4 L 5 L L
— COS(ZT[_X) COS(@> + } Cos(@) ,
L L 4 L

whereC fixes the initial average Mach number apds the instantaneous pressure for th
equivalent incompressible flow.

We first simulate this MHD flow on a hybrid grid consisting of quadrilaterals and triang|
as shown in Fig. 6. We perform the simulations using the formulation of Powell [4] for t
magnetic field as well as the streamfunction formulation with the objective of investigat
divergence errors in the magnetic field. The rest of the parameters of this simulatior
listed in Table II. In Fig. 7 we plot streamlines of the incompressible flow as well as 1
compressible flow at Mach number 0.4 and non-dimensional tim&.0. These results
agree very well with the simulations of [9] at the same set of parameters. We note here
the compressible flow exhibits structures of finer features compared to the incompres
flow but the differences in the magnetic field are less obvious. Next, we examine erro
V - B by comparing the two implementations corresponding to the eighth-wave formula
and the streamfunction formulation for compressible flow and identical conditions as ab
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TABLE Il
Simulation Parameters for the Compressible
Orszag-Tang Vortex Problem (Hybrid Mesh)

Parameter Value

Dimension 2D

S 100

S 100

A (Alfven number) 1.0

Mach 0.4

N 12

Kouad 176

Kii 64

Method Discontinuous Galerkin

In Fig. 8 we plot contours of the divergence of the magnetic field. We see that it is mo
zero except for certain regions associated with very large gradients in the magnetic 1
especially for the eighth-wave formulation. To examine these regions we also plot in Fi
theV x B (which is proportional to current density) and we see that very Sagadients

are indeed induced, especially in the middle of the domain (where divergence errot

FIG. 7. Compressible Orszag—Tang vortéx= 2, instantaneous fields, Maeh0.4). Top, incompressible
flow; left, flow streamlines; right, magnetic streamlines. Bottom, compressible flow; left, flow streamlines; rig
magnetic streamlines.
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FIG.8. Compressible Orszag—Tang vortéx2, instantaneous fields, Maeh0.4). Top, isocontours oV - B
corresponding to the eighth-wave formulation (left) and streamfunction formulation (right). Bottom, isocontc
of V x B corresponding to the eighth-wave formulation (left) and horizontal profile across the middle of
domain (right).

order(O(1) are present), as shown in the profile taken across the domain in the same f
(bottomright). The errorsin divergence seenin the streamfunction formulation are obvio
spatial discretization errors and are approximately two orders of magnitude lower thar
divergence errors of the eighth-wave formulation. Despite these differences in diverg
errors between the two formulations, the resulting velocity and magnetic fields are iden
within discretization error.

We now consider the effect gi-refinement on accuracy using the unstructured mesh
Fig. 6 (right). Vorticity is a good indicator of “noise” in the solution of unsteady simulatiot
as it reflects errors in derivatives. More specifically, we examinetineof momentunas
low resolution simulations result in non-smoothness in this vorticity-like quantity. In Fig
we compare the vorticity at time= 1 for the unstructured mesh shown in Fig. 6 (right) rul
with N =4 andN = 16. The top figures show how the vorticity profile varies across tl
lower-left to top-right diagonal. The vorticity in this direction should be symmetric abc
the mid-point. We see that & =4 the profile is noisy, the peeks are not well resolve
and the symmetry is not very well represented. The results are improved very quickl
we increase the polynomial ord&. Here we present the final resultsit= 16 and we
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FIG. 9. Simulation of the compressible Orszag—Tang vortex 1, instantaneous fields, Maeh0.2,
K =132 on the unstructured mesh. Top left, curl of momentum along the diagbhal4). Bottom left, iso-
contours of curl of momenturfN = 4). Top right, curl of momentum along the diagorihl = 16). Bottom right,
iso-contours of curl of momentuigN = 16).

see that symmetry is restored and the profile is very smooth. Results for the interme
values of thep-orderN can be found in [34].

5.4. MHD Flow Past a Cylinder

In this test we consider uniform flow past a circular cylinder. We perform simulatio
using an unstructured mesh shown in Fig. 10 consistirg ef490 triangular elements. A

20 B

20 A : |, T 1 h L -

L
-20 ] 20 40 60
X

FIG. 10. Unstructured mesh used in simulations for flow past a cylinder.
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TABLE 11l
Simulation Parameters for Compressible Flow
Past a Cylinder with a Streamwise Magnetic

Parameter Value
Dimension 2D

S 100

S 100

A 0.1

Mach 0.5

At le-4

N-range 1to8

K 490

Method Discontinuous Galerkin

uniform magnetic field (streamwise direction) is imposed at the inflow and zero values
prescibed at the cylinder curface. We have simulated both compressible and incompre:
flow with and without the presence of a magnetic field. The relevant list of parame
is shown in Table Ill. Note that external fields can either suppress or enhance the vc
street as has been found in experimental and numerical work for incompressible fl
[36-38].

In Fig. 11 we compare the two components of the magnetic field for incompressible
compressible flowl = 0.5). We see that the fields look similar although finer scale featur
are present in the compressible case. Next, we compare the velocity fields of a compre:
flow with and without the presence of the uniform magnetic field at the inflow; all ott
parameters are similar. The results are plotted in Fig. 12. We see that up-down symr
of the x-component of velocity has been broken in the wake and the regular patter
the y-component of velocity also breaks down ten diameters from the cylinder. This is
indication that the specified magnetic fields is causing the von Karman street to bec
unstable.

6. SUMMARY

We have developed a new method for solving the compressible viscous MHD equat
on standard unstructured and hybrid meshes in two and three dimensions and pres
several convergence tests and flow simulations for validation. The new method is b
on a discontinuous Galerkin treatment of the advective and diffusive components. Thi
turn, allows the use of orthogonal tensor-product spectral bases in these non-orthogon
polymorphic subdomains, which results in high computational efficiency. In particular,
computational cost i& N9+1 (whered =2 or 3 in 2D and 3D, respectively) witk the
number of elements and the polynomial order in an element. This cost corresponds
differentiation and integration cost on the entire domain and is similar to the cost of s
operations in standard global methods in simple separable domains [39]. The meth
essentiallymatrix-freeas the only matrix inversion required is that dbaal mass matrix,
which is diagonal, and thus trivial to invert.

Such a discretization based here on discontinuous Galerkin projections is simile
the finite volume formulation, and in particular the implementations reported in [4, 5].
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FIG. 11. Instantaneous iso-contours of the magnetic field for compressible (top and third from top)
incompressible (second and fourth from top) flow.



VISCOUS MHD EQUATIONS 631

LDSAIRSE
LIFIATR

T T

=TT

—Trr T T

FIG. 12. Instantaneous iso-contours of the velocity field for compressible MHD flow (top and third from tc
and compressible flow without magnetic fields (second and fourth from top).
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particular, the degenerate form of the propodisdontinuougsalerkin spectrahip element
method for constant polynomial ordé¥ = 0) reduces to the standard finite volume methoc
In contrast, degenerate forms of tbentinuousspectraltip element Galerkin method ob-
tained by settindN = 1 reduce to the standard finite element method [40].

The flow examples presented here were all subsonic cases. However, the metho
also handle supersonic cases by handling strong discontinuities with adapéfreement
and by lowering the polynomial order locally. Although this adaptive procedure has not
been implemented for the compressible MHD code, it has been shown to be very succe
in simulation of supersonic flows without magnetic fields in [15, 16]; see also [17]. Ti
approach avoids filtering, limiters, or non-oscillatory reconstruction algorithms, which &
substantially to computational cost and are not generally robust for most aerodyne
applications (see, for example, [41, 12]).

The method presented here borrows from features of finite volumes (flux-based), fir
elements (variational statement), and spectral methods (high-order basis), and is both 1
and flexible as it is conservative. It does not rely on flux-limiters, and it works on stand
unstructured and hybrid meshes. Although the examples presented are for relatively
Reynolds number, numerical experience has shown that discontinuous Galerkin met
combined with high-order spatial discretization are suitable in simulating high Reync
number turbulent flows without the need fad hocturbulence modeling. In particular, a
very useful feature of the method is the capability of usmagable p-order per element
thus distributing resolution resources efficiently in resolving the multiple boundary lay
encountered in wall-bounded MHD flows.

APPENDIX |

Spectral Bases in Polymorphic Domains

In this appendix we will show that it is possible to construct tensor-product spectral be
for polymorphic non-orthogonal domains. Specifically, we will show that it is possikt
to find a generalized singular Sturm—Liouville operator fat-dimensional simplex and
present its eigenfunction/eigenvalue pairs explicitly. The eigenfunctions for theccasks
(a segment)d =2 (a triangle), andl =3 (a tetrahedron) will prove to be useful in the
context of polynomial-based approximation on these simplices. Similar results have
been obtained for some of the domains we consider here in [42, 43] following differ
derivations.

A d-dimensional simplexs® can be defined as a set of constraints on the entries o
d-dimensional vector,

i=j
Sdz{reRdmeri <1 j=1,2,...,d}.

i=1

We define an operator ondadimensional space of at least twice differentiable functior
of d variables,

i=d j=d
LE = Zari<l’i3ri — I erarj).
i—1 =1
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We also define &d + 1) vector, s=[(1 — w)r1, (1—w)ry, ..., (1—w)ry, o], wherew €
[—1, 1]. Using the identities

s = —,, i=1....d
—w

1
0Sd+1 = 1-w Zriari + 00

S3S ="ridy,, i=1,...,d
i=d+1

Z S9s = —Zr B, + wd,

it is straightforward to show the relationship

1 1
Ld+ S0u(0(1— ).

Ld+l
l-w 1—-w)

From this we can repeat the recurrence relation ending up with the operator in terms c
a coordinates,

i=d 1 .
=3 g e @)% = ( — Dadl
i=1 H] |+1 j)

wherea is defined by the canonical transform

n=a(l-a)l—ag)- --(1-aq)
rp=ay(l—as)---(1—aq)

g = a4.

This form of the operator shows thif is self-adjoint in the inner product taken over the
simplexS”. This is becaus&® maps to ai-dimensional unitbo}®={r eRY | 0<r; <1
i=1,2,...,d} and using integration by parts we notice that all the surface integral ter
are zero.

For example, we consider thth operator in the sum fdrd,

i 1 k—1 )
(, (LY v) g = ( rrll(ak))[am(l—a)aa)—o —1)ai3a]v>
j |+l

ud

(1 ak)k 1 1 i
A_a) A=a)- Jaa(aa(l—eu)aa)]l,)
l |+l j

(o
(e o),
(o

Jb= 2k7&|(1_ak)k_1> )
(02 (@ (1 — &))" 3a)
a a] < H] |+l(1_aj) ’ ud
(L)

ud
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We can also use the definition of the Jacobi polynomials to showtthaas eigenfunc-
tions,
i=d
= [[a-a) P 0@
i=1

whered e N¥, ¢; = Z'J d;. The eigenvalues for these eigenfunctions are

Ay = Ca41(Cas1 + d).

In summary, the operators we have defined irdftBmensional simplex have simple tensol
product eigenfunctions when mapped td-dimensional unit box. Also, their eigenvalues
aren(n-+d) wheren is the total degree of the eigenfunction in both the mapped and origil
coordinates andr.

Orthogonal (Modal) Bases

The results we now present for the triangle and the tetrahedron are special cases
previous section, but for clarity we will outline some of the steps used to find these res
We first consider the tetrahedron as this has the most complex mapping between the
cartesian coordinates and the tensor coordinates. Using the scaled coor@nbies e
[0, 1] x [0, 1] x [0, 1] for the tetrahedron (for simplicity) we can express the local ortho
onal coordinategr, s,t) e {0<r,s, t,r +s+t<1}as

r=a(l-b)y(l-o
s=b(l-c)
t=c.
We consider the operator
Lyet := 0, (r (1 —r)d, —rsos —rto;) + ds(s(1 — s)ds — Sroy — stoy)
4+ 0 (t(1 —1)d; —tro, —tsds).

Using the following identities it is straightforward to express the operator with respec
the (a, b, ¢) coordinates:

rar == aaa
Sas ab 8a + bab
(1-b)
=2 a2 g
1-b1l-o0 1-o0
a bc
rar +Sas+tat = 8a+ ab+cac.

1l-b@-0 1-o0

After some manipulation the operator can be expressed in terms @f,thec) coordinates
and is

1 1 1 1

LTe[ [83(8.(1 a.)aa)] +

3 (b(L — b)2
1-b1- A=) a0 )?0p) ]

1
Ao [8c(c(1 — ©)%)].
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This demonstrates that the operator maintains tensor form {@ttwec) coordinate system.
It is now trivial to show that this is a self-adjoint operator by applying one-dimensiot
integration by parts to each of the three tensor parts. Also, by using the definition of
Jacobi polynomials we can show that the orthogonal basis is a set of eigenfunctiogs of
and find their eigenvalues.

We will now show that the polynomial functions; defined by

1-b\' 5 1—c\ ) ..
dijk = Pio,o(a)(7> Pj2'+l’0(b)<T) pk2(l+1>+2.,o(c)

are eigenfunctions of théte operator. We consider the first part of the operator. Tt
definition of the Jacobi polynomial directly implies the relationship

da(a(l — a)dagijk) = —i (i + Dijk.

We now consider the first two terms of the operator. Using the previous result we can ren
the dependency oa and then use the definition of the Jacobi polynomials with non-ze
(a, B) to show that the polynomials are indeed eigenfunctions of the first two terms of
operator:

id+1
Logijk = dpb(b(1 — b)dpijk) — bdpijk — %Qbijk
= (1-b)' R*@PRX %)
82
b2
=¢ik[—i(+@+D+1D—i@2+i)]

=—(@{+ i+ ]+ 2dijk.

x [b(1—bh) +(1—(3~|—2i)b);—b+(—i(2+i)) pj2i+1-°(b)

Applying the same technique again we come to the relationship

i+phi+j+2
1-c

Lrewijk = 9c(C(1 — C)dcijk) — 2CocPijk —

= Aijk Pijk -

dijk

Thus, the tensor product of Jacobi polynomialg are eigenfunctions of the total operatol
L et With eigenvalues

A =—0+]+K0+]+k+3.

This approach clearly applies to the triangular, quadrilateral, prismatic, and hexahe
elements as well.

The Orthogonal Triangle Basis

The triangle is a special case of the tetrahedron with—1. As before, we can specify
a self-adjoint operator that has the orthogonal basis proposed by Dubiner [21] as its e
functions. We set out the scaled coordinate system, operator and eigenfunction/eiger
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pairs:
r=a(l—>b
s=b
Lri = 9 (r(1 —r)dr —rsds) + 9s(S(1 — $)ds) — rsdr)
= 1flb[a.—,l(al(l —a)da)] + (1i b 3 (b(L — b)?3p)
¢i; = P*°@(1 - b)' P *0(b)
Aij ==+ D0 +j+2).

The Orthogonal Quadrilateral Basis

The straight tensor product property of the quadrilateral gives a very simple form for
operator; it is the sum of two one-dimensional operators. Similarly, each eigenfunction
straight tensor product of one-dimensional eigenfunctions and their eigenvalue is a su
the one-dimensional eigenvalues.

r=a
s=b
Lquad= ar ( (1= 1)3) + d5(S(1 — $)3s))
= da(a(l — @)da) + dp(b(1 — b))
¢ = P @P}(b)
Aij=—i(i+D—-j(+D.

The Orthogonal Prism Basis

The prism is simply a tensor product of a triangle and a uniform third direction. Hen
we sum the operator for the triangle in ttnet) directions and the one-dimensional operato
in thes direction.

Likewise, we can obtain the eigenfunction/eigenvalue pairs from the above analysi:
the triangles,

r=a(l-o
s=Db
t=c

Lprism= or (r (1 —r)or —rtoy) 4+ 9s(s(1 — s)ds) + ot (t (L —t)oy —rtoy)
1 1
= 7o [0a@L —)3a)] + [B(b(L — b)dp)] + T—[de(c(L — ©)%dc) ]
ik = PP2@ PP () (1 - o) B2 *0(c)
ik == +K0E+k+2)—j(j+D.

The Orthogonal Hexahedral Basis

The hexahedral analysis is trivial since, like the quadrilateral, the hexahedron is a str:
tensor product of three one-dimensional directions. The operators and eigenfunctior
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eigenvalue pairs are

r=a
s=b
t=c

Lhex = 0r (r (1 —1)ar) + 9s(S(1 — )ds) + At (t(1 — 1))
= da(a(1 — @)da) + dp(b(1 — b)dp) + dc(c(1 — €)dc)

dijk = P*%(a) Pjo’o(b) PX°(c)

A =—-i(+1—j(j+1D—kk+1).

The Decay of Basis Coefficients

Thus, each basis is a set of eigenfunctions of a singular Sturm—Liouville operator wil
leads us to the observations

Gijk = (U, $ijk)

—( 7m (¢Ijk))

1
= m('—(u), Pijk)

1
= — (L™, ¢ijk)-
Ajk
Hence, if the function is infinitely smooth we see that the coeffici@pismust decrease
faster than any polynomial power fj, k. Thus, the sum

N N N
V=3 ik
i j k
must converge exponentially fastiaasN increases for all infinitely smootin.

It is important to notice that since straight-sided tetrahedra and triangles have con
geometric mapping Jacobians these results hold for arbitrarily stretched tetrahedre
triangles. This does not follow for the other elements since their geometric Jacobian:
quadratic for non-perpendicular elements. This backs up the findings that the simpl
elements handle deformation better than the other types.

Unfortunately, it does not appear that this method generalizes to the pyramid in a stra
forward way. However, a suitable orthogonal basis is known for a pyramid:

r=a(l-oc
s=b(l-o0)
t=c

bk = Pio,o(a) Pjo'o(b)(l —¢)t pk2(i+j)+2.o(c)_

This basis is only appropriate for supportifR§ since thec component is of the order
i +j +k. Thus, if each, j, k<N buti + j + k> N then itis necessary to use high-orde
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guadrature to integrate these modes exactly. Aldo+ifj + k < N the function is a poly-
nomial inr, s, andt.

APPENDIX Il

Numerical Quadrature and Flux Computation

Here we provide some details on how the numerical quadrature is performed on poly
phicelements and specifically how the flux terms involved in the discontinuous Gale!
formulation are computed. To this end, we take advantage of the tensor product in the t
formed spacéa, b, c) to perform integration. Note that in the following we have change
the range of the variables te-1, 1) from the rangé1, 0) used in Appendix I. The integra-
tions over each element can be performed as a set of one-dimensional integrals using
guadrature. If we used the reference coordinate systems this would be very difficult s
the limits of the “collapsed” elements are not constant.

We first describe the choice of quadrature type for integrating each direction. We
then motivate the inclusion of quadrature with non-constant weights in order to reduce
number of points we use.

In two dimensions we consider integrals of the form

a(X)
f(x)dxdy= f(x(r))——drds
/Physical 00 dx Y Reference x ))a(r)

_ 90 30
"/;mmf““(ana«>aw>dadb

and in three dimensions,

/ f(x)dxdydz:/ f(x(r))@drdsdt
Physical B(r)

Reference
A(X) a(r)

= /Tensor“x“(a”%@ dadbde

We use the Gauss weights that will perform the discrete integral of a function as a sun
1 N-1
/ 1-2"A+ 2/ f@dz=>Y_ f(ZF)u”.
-1 i=0

This will be used in each of thetdirections in thed-dimensional elements. In Table IV we
show the type of Gaussian quadrature we use in each @t theandc directions.
For the discontinuous Galerkin formulation it is necessary to evaluate terms of the f

/f%+/F%
aQ Q

whered is the boundary of an elemef, for all the ¢, test functions in the elemental
basis. There ardl "} test functions for a triangle so the boundary integral iSa®)
operation. This means that the flux integration is as expensive as the volume integral
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TABLE IV
Element a b c

Triangle GLL GRJ, —
Quadrilateral GLL GLL —
Tetrahedron GLL GRYJ GRJ,
Pyramid GLL GLL GRJ,
Prism GLL GLL GRJo
Hexahedron GLL GLL GLL

Note.GLL implies Gauss—Lobatto—Legendre which is
the Gauss quadrature for a constant weight function with
both x =+1 endpoints included. GRJ implies Gauss—
Radau-Jacobi quadrature witl, 8) weights and one of
the endpoints included.

can reduce the cost of this integral by examining the discrete sum form

N N
/m fn = on(@. 0 fH@)wdI™ @)+ Y on(l b) F2(b)wPI%(by)
i=0

i=0

N
+ ) on(=1by) F30)wp 33(bg),

i=0

whereJ" and f" are the Jacobian and flux function for thi edge.
We can rewrite the edgdlux as

%[ @)
> (52
=0

i Wo

N
/ f¢n = Z
edgeg 0

) f8(@)8jodn(ai, bj)wiaw?,
=

where

s 0 ifiF]
T =

The fluxes for the other edges can be constructed in similar ways. Using this summ:
representation we can now evaluate the surface flux integral by adding the edge fluxes s

by weight and Jacobians to tirefield and then evaluating one volume integral.
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